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Summary

"~ In this paper the fully nonlinear equilibrium theory of homogeneous
and isotropic, incompressible elastic solids is used to study the elasto-
static field in plane strain on a half-plane deformed by a concentrated
surface load. Under suitable restrictions on the form of the elastic

potential at severe deformations, it is shown that, for materials which

ultimately "harden® in simple shear, the displacement is bounded near the <
point of application of the load. This is not the case for materials which

ultimately "soften” in shear. Estimates of the true stress tensor near the

X

singular point are given. N f‘“‘
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INTRODUCTION

Under certain circumstances, the description of the elastostatic
field furnished by the classical linearized theory of elasticity may be
inadequate, even when the applied loads are small. Such breakdowns
in the linearized theory are ordinarily local in nature and are brought
about, for example, by stress concentrations such as those induced by
holes or cracks in the interior of the loaded solid. The most extreme
examples of problems of this kind involve a singular point in the
elastostatic field--the tip of a crack, for example--near which the dis-
placement gradient is unbounded. Since the basic approximative assump-
tion underlying the linear theory requires that this gradient be
negligibly small in comparison with unity, it is hardly surprising that
results based on this theory may be in error near such a singular point.

Problems involving large displacement gradients properly fall
within the scope of the finite theory of elasticity. In recent years
there have been several investigations within the framework of the
finite theory of the local structure of the elastostatic field near a
geometrically-induced singular point. Much of this work is summarized
in the review articles [1,2], where references are given., In general,
the analyses of singular problems reviewed in [1,2] are necessarily
Jocal in character; they reveal that the results from linear theory
near the singular point are invariably incorrect quantitatively, and
in some instances may be qualitatively misleading as well. Since it is
often the field near the singular point which is of primary physical
interest, analyses based on finite elasticity are of considerable

significance.
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In the present paper, a further singular problem in elasto-
statics is considered within the scope of the theory of finite
elasticity. This is the plane strain problem of a con-
centrated uniform normal 1ine force applied to an elastic body which,
in the undeformed state, occupies a half-space. Here the singularity
arises because of the character of the applied load, rather than from
the geometry of the undeformed body, as is the case in most sirgular
problems previously treated within the finite theory [1,2]. The "]
present analysis aims at the asymptotic determination of the displace-
ments and stresses near the point of application of the load. We deal

with the fully nonlinear equilibrium theory for homogeneous, isotropic

tncampressible materials that possess an elastic potential. The
only restriction on this potential is one which-pertains to its
asymptotic-behavior at large deformations; it is this regime of
deformation which dominates the local field near the singular point.
Again, it is found that the structure of the stress and displacement f
fields near the singular point differs from that predicted by the linear
theory.

The only previous works devoted to the effect of nonlinearity on
the elastostatic field near the point of application of a concentrated
force are those of Arutiunian [3] and Atkinson [4]. Both of these

authors retain the assumption of infinitesimal displacement gradients

appropriate to the linearized theory, but replace the constitutive law of

the latter theory by a nonlinear one,
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Section 1 contains a review of some prerequisites from the theory
of finite plane elastostatics for homogeneous, isotropic, incompressible
elastic solids. We also introduce in Section 1 the special class of
such solids underlying the subsequent analysis. Section 2 is devoted
to the formulation, analysis, and discussion of the concentrated force .

problem. Only the case of a tensile force is treated in detail.

X
!
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1. PRELIMINARIES FROM PLANE FINITE ELASTOSTATICS

In this work we shall be concerned with the analysis, within the
finite theory, of plane elastostatic fields in incompressible, homo-
geneous, and isotropic elastic materials in the absence of body f’orces.1

Consider an elastic body which--in the undeformed state--is an
invinite cylinder, and let Tl denote a plane open cross-section of this
cylinder perpendicular to its generators. Let (x],xz) be the coordi-
nates of a generic point in Il relative to a fixed two-dimensionatl
rectangular cartesian coordinate system in the plane of 1T .

A plane deformation of the body is given by the transformation

y, ® ya(x1,x2) =x + ua(x],xz) onlT , a=1,2, (1.1)

where s, are the componencts of the positior vector y of the particle in
the deformed body whose position vector in the undeformed configuration
is X; u,are the components of the displacement vector u, all with
respect to the rectangular coordinate system. The function 2 is
required to be twice continuously differentiable on M, and it is fur-
ther required that the mapping X <>y be one-to-one and that its
inverse g have the same smoothness.

The deformation gradient tensor F associated with y has compon-

ents

Qs
<

le

F =

"B (1.2)

P

*g

]For a discussion of the foundations of finite elasticity see Gurtin [5].

For further reading on plane finite elastostatics of incompressible
materials, see [6].
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Since the material is presumed to be incompressible, the deformation
(1.1) must be locally volume-preserving, whence the Jacobian determin-

ant of the mapping must satisfy
J = det[ﬁzB] =] onll . (1.3)

Define the right and left two-dimensional Cauchy-Green tensors C and §,

respectively, by

c=FF , ; LI (1.4)

Gy

= FF

These deformation tensors have common fundamental scalar invariants

given by
I] = tr E = FaBFaB =1, say, (I.S)T
= = 12 -
I2 = det E =J 1
The invariant I is found to obey

I>2 onn . (1.6) -

Moreover, I = 2 if and only if f = 1, where 1 is the two-dimensional
unit tensor. |

Let T be the two-dimensional true (Cauchy) stress tensor regarded
as a function of position on the deformation image " of m. Its compon=
ents T8 represent forces per unit deformed area. If g is the asso-

ciated nominal (Piola) stress tensor field on II, whose components Tag

IRepeated subscripts are summed over the range (1,2).
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represent forces per unit undeformed area, one has
¢ =) . (1.7)

For an equilibrium deformation in the absence of body forces, it is

necessary that t satisfy

divt=20 ’ T=T on Il (1.8)
It follows from (1.7),(1.8) that
divo=0 , of =Fg' onT . (1.9)

Suppose that T is a regular arc in Il which is mapped onto r* in
”*
I by the deformation (1.1), and denote by n and g* unit normal vectors
of T and T'*, respectively. The true traction vector t and the asso-

ciated nominal traction vector s are given by

§ =on onr |
(1.10)
t = tn* onr*,

It can be shown that

(1.m)

s=0on T ifandonly ift=20 on r*

Moreover, (1.11) continues to hold true for an arc T on the boundary of
1 if the deformation and nominal stress field are suitably regular on
the closure T of . This important fact allows the boundary condition

for a traction-free surface I'* in the deformed body to be specified on
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the known pre-image T of T'* in the undeformed body.

The mechanical response of the homogeneous, isotropic, incompres-
sible material under consideration is governed by the strain energy
density W perunit undeformed volume. For a plane deformation of the

type described above, W depends only on the deformation invariant I:

W = N(I) . (].]2)

The stress-deformation relation is

= ' - *
%B-ZW(U mp%p p%s on II", (1.13)

where GaB is the Kronecker delta and the scalar field p is an arbitrary
hydrostatic pressure whose presence is necessary because of the con-
straint of incompressibility. Because of the presence of p, the

true stress tensor is not completely determined by the deformation for
an incompressible material. From(1.13), (1.7)it follows that

9y = 2W (I)ﬁus- peBYeaprY on T, (1.18)

provided €48 are the components of the two-dimensional alternator. In
the foregoing, W' denotes the derivative of W with respect to I; we
assume that W is twice continuously differentiable for I > 2. It is

further assumed that W vanishes in the undeformed state, so that
W) =0 |, (1.15)
and that

w(ry-o , 122, (1.16)




-8-

so that the Baker-Ericksen inequality is not violated.]

The linear theory of elastostatic plane strain is recovered from
the finite deformation theory briefly described above by a systematic
linearization with respect to the displacement gradients ua’s. Under
this linearization, the distinction between true and nominal stresses
disappears, and the constitutive law passes over into
%

Tag = %p = M Yug - Pohg s (1.17)

where

(1.18)

~
[}
N st
-
=
+
L3

aB

are the components of the infinitesimal strain tensor, and

2W'(2) (1.19)

k=
n

js the infinitesimal shear modulus. The incompressibility condition

J =1 linearizes to
Y. =u__=divu = 0 . (1.20)

The approximate form of W for infinitesimal deformations is found by

1inearization to be
w=‘2‘-ya8 Yog (1.21)

A deformation (1.1) of the form

Tsee [7].




Yo = BaB Xg (1.22)
where the BaB are constants satisfying
det[BaB] =1 , (1.23)

is a homogeneous deformation of the incompressible body. Two particu-

lar homogeneous deformations are of special interest: uniaxial stress

and simple shear. For the former one takes
Yy = My s Y5 =-% Xo x>0, (1.24)

with 1 constant. From (1.13), one then finds that T2 = Ty = 0, and,

if p is chosen to be

p= 2w (1) 22, (1.25)
where

I =32+ NG R (1.26)
one has

T22 =0 > (].27)

as well. The only nonvanishing stress component is then found from

(1.13) to be

Ty = MDA (1.28)

For simple shear, one has the homogeneous deformation

Yy =Xtk Y, =Xy
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where the constant k is the amount of shear. From (1.13) one finds the
relation between the true shear stress T2 and the amount of shear k

to be

2y W (I)k , (1.30)

where now

2

I=2+k (1.31)

We shall assume throughout that W has the following property:

W(I) =AI" + o(I") as I+ , (1.32)
where A and n are material constants satisfying
A>0 , n>1/2 . (1.33)

For an incompressible material satisfying (1.32), one sees from

(1.26),(1.28) that in extreme uniaxial stress (A + =), one has

rn'\.znAxZ" . Aew (1.34)

For severe simple shear (k+«), one obtains from (1.31),(1.30),(1.32)

t1p ™ Ak, Kk se . (1.35)

Since n > 1/2, the stress response in uniaxial stress is, by
(1.34), always asymptotically hardening as X + =, in the sense that
d111/dk is increasing with increasing A. In shear, the stress re-

sponse of (1.35) is hardening as k + = for those materials with n > 1,
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softening for %-< n < 1, and asymptotically linear if n=1., The
asymptotic forms of the stress response curves in uniaxial stress and

simple shear for materials satisfying (1.32),(1.33) are shown in Figure 1. i

If one were to permit n < 1/2 in (1.32) one would find that the
field equations of the equilibrium theory would cease to be an elliptic

system at sufficiently severe deformations; see [6].

Before proceeding to the specific problems to be discussed, it is

useful to take note of an implication of the field equations (1.3),

(1.9), (1.14). One can show that det F =1 implies that

F 0 on I . (1.36) )

[ € =
By "ap pY.,B

Substitution from (1.14) into the equilibrium equations (1.9) then

A e

gives, with the help of (1.36), the equation

F onl . (1.37)

(W' (1) Figl g = P g €ay 4o Foy ]

If one multiplies (1.37) by F,.» makes use of the fact that det F =1
as well as of the definitions (1.4)],(1.5)], one finds that
TVZ

vp = W' (1) F1vly + 20(1) §T~ 71 onl. (1.38)

We - will find this form of the equilibrium equations helpful in i

the sequel.

L
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2. THE HALF-PLANE DEFORMED BY A CONCENTRATED FORCE

A. Formulation of the Problem

We consider the case in which the open cross-section I of the un-
deformed body is the half-plane Xy > 0, ~= < Xpg < and we denote by \
% the closure of Il with the origin deleted. Given the plane strain
elastic potential W(I) of the homogeneous, isotropic, incompressible
material to be considered, we seek a deformation Yy = §a(x],x2)on
T such that the nominal stresses 48 generated by the deformation
through (1.2)-(1.5)and (1.14) conform to the equation of equilibrium

(1.9). We further assume that the free-surface conditions

o]](O,xz) = 021(0,x2) =0 , |x2| >0 (2.1)

hold and we require that , as |x|+=, the true stress field

should tend to zero:

rae(x],xz) +0  as x| +e x; 2 0. (2.2)

Further, we impose the requirement that

= oy} i i T T
Oug * o{r"') as r+0, uniformly in @, -528¢ 5 s (2.3)

where r,0 are polar coordinates at the origin: Xy =T cos 8, Xp= T sin 6.

We next prescribe that
m/2
J a8 nBr'de = f 61a s r>0 (2.4)
-r/2
corresponding to a concentrated force of magnitude |F| acting on the
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boundary of the deformed body in a direction parallel to the x1-axis.
We shall 1imit our attention to the case F > 0, so that the force is

in the negative x1-direction and is therefore tensile. 1In (2.4), n s

the unit vector in the radial direction. The compressive case could be
treated by a similar analysis.

We finally assume the elastostatic field to be symmetric about
the xl-axis. This in particular rules out a concentrated moment at
the origin; symmetry also implies that (2.4) holds automatically

for a = 2.

B. The Elastostatic Field near the Origin--Lowest Order Asymptotic
Analysis

We now assume that the elastic potential W(I) satisfies (1.32),
(1.33), and we investigate the local structure of the field near the
point of application of the force. We begin by making the Ansatz

m m
Y = r a va(e) + o(r “'1) as r+0, (no sum on a) , (2.5)

uniformly for -n/2 < 8 < n/2, where my and m, are constants restricted

by

me<l , mo> (2.6)]

2
and neither of the unknown functions va(e) eC ([—;-,;J) vanish identi-

caHy.2 Moreover, in view of the prevailing symmetry one has

410ne can show systematically that (2.6) are necessary when the applied force

is tensile. They correspond physically to the fact that, along the line of
symmetry 6 =0, the principal stretch A in the x1-direction is large, while
xz is small. The hypothesis (2.6) must be altered when the load is compres-
sive. Note that we do not assume m, 20.

ZHe actually need the slightly stronger assumption that v1(e) £0 and

v, has at most a finite number of zeros in [- 5-.5-],
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1 (-8) = V](G) N Vz('e) = "Vz(e) . (2.7)

It is assumed that (2.5) may be formally differentiated twice.
From (2.5) one obtains for the deformation gradient tensor F the

local asymptotic representation
ma-l
F.nf,_r as r+ 0 (no sumon a) » (2.8)

provided

fag = MV, (8) CB(G) + eYBcY(e) QG(B) (no sumon o) . (2.9)

Here the dot denotes differentiation with respect to 6 and we have

introduced the abbreviations

c](e) =cos 8 , cz(e) = sin 9 . (2.10)

From (2.8),(2.9) there follows

. . m +m2-2
J = det F = (mlv]v2 - mzvzvl) r

+ o(r ), r=+0 (2.11)

Since incompressibility requires J = 1, we must have

(=]
-

motmy-2< (2.12)

and either
mvqVy = MyV,vy = 0 if m +m, < 2, (2.13)

or
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m]v]\'l2 - mzvz\'/1 = if mtmy, =2 . (2.14)

From (1.5),(2.8),(2.9) we obtain

2(m1-1)

Iar G(g) as r-+0 (2.15)

where

a(8) = ¥3(8) + mé V(o) . (2.16)

In view of the assumption (2.6) concerning my, one has from (2.15) that

I +was r+ 0. The material assumption (1.32) then yields

W
2 -1
W(I) ~ AG"(8) r n(m-1) .

W' (1) ~ nAG" 1 (8) rZ(n-1)(m]-1) pasr0

2(n-2 -1
W"(I) ~ n{n-1) AG"'Z(G) r (n )(ml 19 (2.17)

We now recall the field equations in the form (1.38); with the help of
(2.17),(2.8),(2.9),(2.6),(2.15) we find from (1.38) that

2(my=1)n-~1
%E- n 2nAm-|V-|(9) Z(e) r (m] )n ’ (2.18)

and

%g ~ 2nA v, (8) Z(8) v

(2.19)

S|—

as r + 0, where
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2(6) = " (8) {G(0)[¥(0) +md v,(8)]
+ (n-1)[6(e) vy(e) + 2m,(n-1) G(8) v,(e)]} . (2.20)
Compatibility of (2.18),(2.19) requires that vy and Z satisfy

m1v]Z + 1 - (2n-1)(my-1)] \},z =0 . (2.21)

Once (2.21) is fulfilled, one finds from either (2.18) or (2.19) that

m, 2n(m]-1)
p ETTT A v](e) 2(e) r as r+0. (2.22)

We next consider the boundary conditions (2.1). Because of (1.14)

these are

ZN'(I)F]] - szz =0

ate=z12'-, r>0. (2.23)
ZN’(I)F21 + pF12 =0

Multiplytng the first of (2.23) by Fiy» the second by Fars adding the

results, and using (1.3), we obtain

b = 2w'(r)(F$1+F§1) at 6=:%, r>0. (2.28)

On the other hand, eliminating p between the two equations (2.23) yields,
in view of (1.16),

= = m
FiaFig * Farfep = O at 8=t3, r>0. (2.25)

Making use of (2.17),(2.8), and (2.9), we obtain from (2.24) the result
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2n(m,-1)

1

p 2nAG" N (e) ¥ (0) r as r>0,0=23 . (2.26)

Comparing (2.22) at 6 = t% and (2.26) leads to

m
2n6"™ () v (£3) =n—,]%1-v1(t%) 2(3) . (2.27)

The second boundary condition (2.25), with the help of (2.8),(2.9),(2.15)
gives

Qﬂt%)vlhgﬁ =0, (2.28)

We now show that the two boundary conditions (2.27) and (2.28),
together with the differential equation (2.21), imply that

V(2 (2.29)

DM E ]
~—
]
o

and

2(+ %)

L]
o

(2.30)

We first establish (2.30) by showing that the hypothesis Z(w/2) # O leads
to a contradiction. If Z(wn/2) # 0, there is an interval [eo.w/z],
8, < 1/2, on which Z(8) vanishes nowhere, by continuity. Equation (2.21)
can then be integrated on [eo.n/2] to give

m)

(Zn-T7Tm; -7 -1
vi(0) = c|z(e)] . egs0<). (23D

where C fs a constant. If C = O, then v1(e) =0 on [eo,n/2]. whence by
(2.16),(2.20), Z(8) = 0 on [eo,n/2], contradicting the hypothesis
Z(w/2) # 0. Thus C # 0, and so by (2.31), v](e) # 0 for all
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8¢ [eo,w/Z]. In particular, v1(w/2) # 0, so that by (2.28), 91(n/2)= 0.

Thus (2.27) has been violated unless m = 0. But if my = 0 we conclude
from (2.21) that vy = constant on [eo,v/Z], which leads via (2.20),(2.16)
toZ=0on [eo,n/Z], again contradicting the hypothesis. Thus indeed,
Z(w/2) = 0, and, since Z(8) is even, (2.30) holds. From (2.27) and
(2.16) 1t then follows that (2.29) holds as well.

An argument similar to that just used to establish (2.30) can now

be constructed to show that (2.21),(2.30) imply that

2(8) =0 on [-n/2,m/2] (2.32)

From (2.32),(2.20),(2.29) we then obtain a nonlinear eigenvalue problem

for m],v](e):

(6" (8) ¥;(0)1" + [md + 2m, (m-1)(n-1) 16" (8) v,(8) = 0 ,

-n/2 < e < n/2 (2.33)
vy (s %) =0, (2.38)

The differential equation (2.32) is identical with one which has arisenin
the local analysis of the elastostostatic field near the tip of a crack;
see [8],[91,010], [1]

In view of (2.32), we have from (2.22) that

Zn(m]-l)
p = o(r ) as r+0. (2.35)

Suppose that my, = 0. Then (2.33),(2.34) imply that v,(8)= constant

m
and the leading term r 1v1(9) in the expansion of yy near r = 0 may be

i
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viewed as a rigid body translation paraliel to the x]-axis. Since the
boundary value problem determines the elastostatic field at best to
within an arbitrary translation of this kind, we shall discard the case

my = 0 and assume henceforth that, in addition to (2.6),

m#0, (2.36)

also holds.
It is now possible to prove that (2.36),(2.6) and the assumptions
made concerning Vi and Vo imply that (2.13) leads to the contradiction

vy = 0. Thus (2.14) must hold, and thus
m +m, = 2. (2.37)

From (1.14) we have

= 2W'(I) FlB - (2.38)

918 P €gy Foy -

Making use of (2.17),(2.8),(2.9),(2.35)-(2.38) we can show that the first
term on the right in (2.38) dominates the second, and hence that

(Zn-l)(m]-l)

" ZnAm.lG"°](e) f'lB(e) r as r-0. (2.39)

O',B

From (2.3) we conclude that (2n-1)(m1-1) > =1. In order to use (2.4)
with a = 1, we first observe that ny = cg (see (2.10)), and from (2.39),
(2.9) that
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m/2 we (2n-1)(my-1) +1
O1gMg * de ~ 2nm1A G (9) v](e) da r
-1/2 -m/2 as r-0. (2.40)

It follows that

m1=%§n“{11-)-<1 , ntl. (2.41)]

From the boundary value problem (2.33),(2.34) with m given by (2.41), one

finds

v](e) = k1 = constant , -n/2 <8 <72, n#1 . (2.42)
Since (2.37) holds, we have

>1 n#l. (2.43)

With the help of (2.42) and the fact that vz(e) is odd, we can now deter-

mine v, from (2.14) as

v,(8) = —1—8 = k,0 . -em2<0<m2, n#l. (2.44)
2 E]m1 2

Finally, we return to (2.4) with a = 1 to determine k] in terms of F.

Using (2.40)-(2.42) and (2.16), we obtain

[k 2" (k) = pie o nA1 (2.45)

7

]Recall that m, = 0 has been excluded.




and hence
1

_ _2n-] F 2n-1
k] * 21 (m) . n#l . (2.46)

Thus, for n # 1, we have determined the first terms (2.5) in the ap-

proximation to the deformation near r = 0 as follows:

2(n-1 =
y] ’\lk] r n- 9
2n »as r+0, -n/2<6<7/2, nfl,
2n-1 1 2n-1
Yo v v T e (2.47)
2 " 2(n-T) k1 J

with ky related to F through (2.46). The deformation image of the bound-

ary 0= :n/2 of the half-plane is then given in first approximation by

2n-1 T/n

1
1-~
5'1“';1-];(#) v, 1" "0, vl »0,  n#1. (2.48)

We note that if n > 1, so that the material is asymptotically hardening
in simple shear [see (1.35) and Figure 1], the displacement under the
load is finite, while this is not the case for softening materials (n < 1).
A sketch of the deformed surface based on (2.48) is given in Figure 2.
The case n = 1 (a material which is asymptotically linear in shear

(Figure 1)) has been excluded in the results (2.47),(2.48). To treat

this case, it is necessary to replace the Ansatz (2.5), (2.6) by

yy v (log r) vy(8) ,

asr+0. (2.49)
ma

Yo v T T vy(0) R my > 1
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| The special nature of the case n=1 arises because m

and m]==2(n-1)/(2n-1)are'both eigenvalues (adjacent ones in fact) of

=0

the problem (2.33),(2.34). They are distinct as long as n # 1, but
coa]esce1 as n+ 1. This coalescence may be used to motivate the form

of the new Ansatz (2.49) for n

1; we omit the details. One finds from

(2.49) that m, = 2, v](e) = k] constant, vz(e) = (1/k])e , where

k] = F/2Aw. The counterparts of (2.47) are

asr+0, -v/2<086<7w/2, n=1,
vy~ E el e , (2.50)

while the deformed boundary is now given approximately by

F ‘.Yzl
N 109(-;;2—0 as |y, +0, n=1. (2.51)

The displacement is unbounded near the point of application of the load,
as it is for the softening material (n < 1).
Although the nominal stresses 01720y, 2are fully determined to lead-

ing order as r - 0 at this stage, the fact that, as yet, only the weak

estimate (2.35) is available for the hydrostatic pressure p makes the
asymptotic determination of T993091 impossible without higher order

considerations. In view of the relationship (1.7) between the nominal

o — e e e =

stresses Tu8 and the true stresses TaB' the full asymptotic determination

]A similar but more complicated coalescence of eigenvalues arises in
crack problems, see [8], [9].
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of the latter must also await such higher order results.

C. Higher-Order Asymptotic Considerations

For the present, suppose that n # 1 and replace (2.5) by the two-
term asymptotic representations

m.l S-l
_y.l n k]r + w](e)r ’
asr+0, -v/2<06<sm/2, (2.52)
m2 S
er

Yy k2 + wz(e)r 2 .

with the stipulation that

2 ToT T T
S] > m] [ 52 > m2 s waec (['?9'2']) ] w(l ; 0 on [‘73_2’]’
(2.53)
and that w],w2 have the respective parity of vq and Vo Equations (1.2),
(2.52) 1ead to the following representation for the components of the
deformation gradient tensor:
ma-l sa-l sa-l
FaB = f&e r *9g T +ofr ), (no sum on «a}, (2.54)

provided fﬁB is given by (2.9) and

9,a(8) = s,cq(8) W (8) + EYBCY(G) Qa(e) (no sum on o). (2.55)

The asymptotic representation of the deformation invariant I depends on

the value of $1- One can show after some calculation that necessarily

m <sqy<4- &n1 . (2.56)

&
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Then the asymptotic representation for I is

m]+s -2

+ 2m,s VW T . (2.57)

2 2 rz"“r”
151

I'\:m] i

Equations (2.17),(2.54),(2.55),(2.9),(2.57) and (1.38) yield

51-3

2n-
%%'\. 2nAG1"] Y(6) r .
3) r+0, (2.58)
1ap _ 017
rae - olr ’ ]
where
Y(8) = W1 + KWy s
(2.59)
K = S][(Z“'])S] - 2("-])] 'Y 1
and
e](e) = m]v](e) = m]k] . (2.60)
On the other hand, the boundary conditions (2.23) lead to ;
2(s,-1)-m '
wmEP =0,  plr,eDaol(r ! N (2.61) 3
Integrate the first of (2.58) with respect to r to get f
2n A 62" 5,-2
p'\:-s—l—_—z—Y(e) r , (S-le) . (2.62)
Comparing (2.62) with the second of (2.61), one deduces that
Y(z%) =0 . (2.63)

The compatability of (2.58),(2.62) together with (2.63) then gives
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Y(8) =0 on [-m/2,m/2] . (2.64)

Equations (2.59) and the first of (2.61) imply
wl(e) = B cos vk 9 , B constant, - m/2<6 <m/2 , (2.65)
/E’z—’=jn , = 0,41, %2, ) (2.66)

The second of (2.59) and (2.66) imply that

_ 2(n-1) = Y[2(n-1)]° + 16(2n-1) j° .
2(2n-1) ’

54 J=41,2%2, -+ . (2.67)

One seeks the smallest value of S1 satisfying (2.56). This occurs for

j=1, so that

B S .

The asymptotic results for the spatial coordinates deduced this far

may be summarized as follows:
2(n-1

S
yy kg o +Bcos20r ! , n#l , (2.69)
2n
v, v kP2 nFl o, (2.70)
51-2
p ~ofr ) . n>1/2 . (2.71)

The case n = 1 is treated at the end. Substituting from (2.54) into (1.3),
using (2.11),(2.14) gives that

. 51 +m2 - 2

s +m]-2 Sl+52'2

+ m]k]\&2 r +0(r

) . (2.72)




A simple analysis gives

= _ 2
SpESptmy-m =Sty (2.73)
and )
m, k 3
c 272 4 271
w2 = ——m] -ET 6 w] - T(Tﬁ:l' W] s (2.74)

which on integration, using (2.65), yields

Wy = -(-—i-)—z- {mze cos Ze--;—(mz‘bs]) sin26} . (2.75)
m
11

For n = 1, we can similarly show that

¥y ky log r + B cos 28 rz s n=1 . (2.76)

In an effort to find a strong estimate for the pressure field, we now as-

sume the following three-term asymptotic representation for the deforma-

tion:
m 3 t

Yy YT Y+w r*+z r® , (nosumon a), (2.77)
with the stipulation that
t] >sy>m t, > s, > m, . (2.78)

and z,,2, are functions possessing derivatives of second order on
[-m/2,8/2], which fail to vanish identically and have the same parity as
i and vy.

For n > 1, it can be shown that

2,(8) = D cos 2/8; 6 + k3(uyo% +u,) (2.79)
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and
- = 2(n+
t; = omy - m = 30 (2.80)
where
3n
(m, +2u,) k3 5
D = 2 17 "2 2 , 1< '/q< 2, W
_ 1
U] ——8-12—1_[(2-3“1])(“‘2-‘“1)-4“'2] I'll2 )
> (2.81)
]
UZSEE"[V‘Z("‘]"U])] s

<
[

m
- 2-3m)0 - (my-m) £ DA,

and we arrive at a strong estimate for the pressure field,

Zéz-n[
p'\JZnAG%("']) kg{(mz-m]);g-[ez-(%)z]ﬂ}r n-1 , n>1 . (2.82)

For n < 1, we can show that

z,(0) = Bz(ﬁ] cos 40 - ﬁz) , (2.83)
and
ty =25, -m s (2.84)
where
By =g -k, o G, =g (neT)siky (2.85)

but for the pressure field we have only the weak estimate

25, -my - 2
L R (2.86)

pn~olr
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At this stage we can determine zz,t2 from condition (1.3); however,
it is not necessary to record the results here.
To find a strong estimate for the pressure field for n_< 1 we assume
the deformation admits the representation
m s t L

Yy ™ VT o4 W,r ¢4 zr oy Q" @ , (nosumon a), (2.87)

with the stipulation that

l] > t] > s] > m1 . 22 > t2 > s2 > m2 ,
gy € CZ([-w/Z,W/ZJ).. q, =0 on [-n/2,n/2]
We can now show that
Ly = 2my - my s 712 <n <1 , (2.88)

and that q](e) is given by the value of zl(e) in (2.79). Thus, we can see
a trade in dominance between the third and fourth term of (2.87), fora =1,
as n passes through n = 1. Condition (1.3) is again used to determine %
and gp- For 7/12 < n < 1/2, equation (2.82) is found to give a strong
estimate for the pressure field. The value n = 7/12 is a transition point
for the pressure field. A strong estimate for n in the range (1/2,7/12)
requires much further analysis.

At this point, we will record the results for n = 1.

Yy v k11ogr+ B cos 20 _rz + g— kgcos 40 r41og r
k2

+ [Ecos 40 - ¥ (38 sinde+d0%+n2- 1 |
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Yav kP r - (2.89)
prAki(e? - af v 2) k2,
where B and E are constants.

D. Summary of Results for Deformation and Stresses

The asymptotic results for the spatial coordinates and pressure field
may be summarized as follows:

2(n-1

3 25,-m
yl'\:k.lr n- +Bc0526r1+Bz(u]cos4e-u2)r ! ,;—<n5]7—2, B
2(n-1) s 2s,-m
yp %k r o™ +Beos 2o v V482 (0cos 40 - fy)r )
+[Dcos 2/ 0 +k3( 624 )]r4-3m] Len<t
¢ 1 2\H8 » 12 ,
S 5 3, .2 4-3m,
¥y ™k +Bcos26r ' + [Dcos Z/ETe+ "2(”19 +u2)]r , n>1,
2n s. + 2
¥, v k,0 r?n-l + w,(8) r 17 2n-T s n#l
2 2 2
2!2-n)
F 3 2n 2_(m2 n- 7 ®
P"’;kz{(—zn'_j—)gfe-(-z-)]‘”}l” » JE<n<=, nfl, ]
(2.90)

where k;,k, are given in (2.44),(2.46); wz(e) in (2.75); S; and t, in
(2.68),(2.80); D, Hys My 0 (2.81); and f;],ﬁz in (2.85). B, a constant, is
left undetermined by the local analysis.

We now turn to the asymptotic determination of the actual stresses

Te8" From (1.13),(2.17),(2.8),(2.9),(2.41)-(2.44), and (2.35), one finds
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-2n
F Zn-T
Ty v 7 (mk) T, npl (2.91)
-2(n-1
15 = Ty ~$ (mky) r &1 0, ng1 (2.92)

and using (282),

F 3,2, 1 ,m2
Ty N 7 Mok {87+ 5y (307}

r <" . fp<n<e, n#l. (2.93)
The true stresses here are referred to the material polar coordinates
(r,0). The stress component ™ which is of primary physical interest,
becomes unbounded at the origin for all admissible values of the hardening
parameter, the singularity becoming more severe with decreasing values of
n, and for the range of n under consideration is always stronger than that
predicted by the linear theory. The other normal stress component Ty, Te-
mains bounded for n < 2, but for n > 2 it becomes unbounded, while the
actual shearing stress T2 is bounded for n < 1, and becomes unbounded at
the origin for hardening materials (n > 1). In both stresses TypsTyp » the
severity of the singularity increases with increasing values of n; however,
the order of the singularity is less than that predicted by the linear
theory for all allowable n.

For n = 1 we have, in summary, that

2. 3.3 4 7
Yy vkilogr +Bcos20r + 5 k,cos48 r'logr
1 1 8 "2
k3 2.2 5
+ [Ecos 48 +Tg(sesin4e + 48+ 70 -2-)3 R

2 (2.94)

+ Zkgs(ecose - sine)r4 .

yo kze r




p A Ak§(4e2 - we+2) o2

_F . .
Here, k] l/k2 a7~ while B and E are constant, undetermined by the
local analysis. The components of the actual stress tensor are, using

(1.13), (2.17), (2.8), (2.9), (2.50), and (2.35),

F oni37.2, /T2y 2
vy kr , Ty vy 28T+ G T,

(2.95)
Tan = Toe v £ (2k,) 6
12 = T v 7 (2K

At this stage, a comparison of the results given in (2.94),(2.95)
with those predicted by the classical linear theory reveals the presence
of a 1ugr singularity in the dominant term of the deformation in the Xy
direction in both cases. This is the only similarity! According to
linear theory all the components of the stress tensor possess a 1/r singu-
larity at the origin, but from (2.95) we see the stress component ™

is more singular, while the other components are, in fact, bounded there.

g -,
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